Радио технические цепи и сигналы. Практическая работа «Расчет и построение спектра периодической последовательности прямоугольных импульсов Последовательность прямоугольных импульсов

СИГНАЛОВ

Рассмотрим несколько примеров периодических колебаний, часто используемых в различных радиотехнических устройствах.

1. ПРЯМОУГОЛЬНОЕ КОЛЕБАНИЕ (РИС. 2.3)

Подобное колебание, часто называемое меандром, находит особенно широкое применение в измерительной технике.

При выборе начала отсчета времени в соответствии с рис. 2.3, а функция является нечетной, а рис. 2.3, б - четной. Применяя формулы (2.24), находим для нечетной функции (рис. 2.3, а) при s(t)=e(t):

Рис. 2.3. Периодическое колебание прямоугольной формы (меандр)

Рис. 2.4. Коэффициенты комплексного (а) и тригонометрического (б) ряда Фурье колебания, показанного на рис. 2.3

Учитывая, что , получаем

Начальные фазы в соответствии с (2.27) равны для всех гармоник.

Запишем ряд Фурье в тригонометрической форме

Спектр коэффициентов комплексного ряда Фурье показан на рис. 2.4, а, а тригонометрического ряда - на рис. 2.4, б (при ).

При отсчете времени от середины импульса (рис. 2.3, б) функция является четной относительно t и для нее

Графики 1-й гармоник и их суммы изображены на рис. 2.5, а. На рис. 2.5, б эта сумма дополнена 5-й гармоникой, а на рис. 2.5, в - 7-й.

С увеличением числа суммируемых гармоник сумма ряда приближается к функции всюду, кроме точек разрыва функции, где образуется выброс. При величина этого выброса равна , т. е. сумма ряда отличается от заданной функции на 18%. Этот дефект сходимости в математике получил название явления Гиббса.

Рис. 2.5. Суммирование 1-й и 3-й гармоник (а), 1, 3 и 5-й гармоник (б), 1, 3, 5 и 7-й гармоник (в) колебания, показанного на рис. 2.3

Рис. 2.6 Периодическое колебание пилообразной формы

Рис. 2.7. Сумма первых пяти гармоник колебания, показанного на рис. 2.6

Несмотря на то, что в рассматриваемом случае ряд Фурье не сходится к разлагаемой функции в точках ее разрыва, ряд сходится в среднем, поскольку при выбросы являются бесконечно узкими и не вносят никакого вклада в интеграл (2.13).

2. ПИЛООБРАЗНОЕ КОЛЕБАНИЕ (РИС. 2.6)

С подобными функциями часто приходится иметь дело в устройствах для развертки изображения в осциллографах. Так как эта функция является нечетной, ряд Фурье для нее содержит только синусоидальные члены. С помощью формул (2.24)-(2.31) нетрудно определить коэффициенты ряда Фурье. Опуская эти выкладки, напишем окончательное выражение для ряда

Как видим, амплитуды гармоник убывают по закону , где . На рис. 2.7 показан график суммы первых пяти гармоник (в увеличенном масштабе).

3. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ (РИС. 2.8)

Ряд Фурье для этой функции имеет следующий вид:

Рис. 2.8. Сумма трех первых гармоник периодической функции

Рис. 2.9. Периодическая последовательность прямоугольных импульсов с большой скважностью

На рис. 2.8 изображена сумма первых трех членов этого ряда. В данном случае отметим более быстрое убывание амплитуд гармоник, чем в предыдущих примерах. Это объясняется отсутствием разрывов (скачков) в функции.

4. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ (РИС 2.9)

Применяя формулу (2.32), находим среднее значение (постоянную составляющую)

и коэффициент гармоники

Периодическая последовательность прямоугольных видеоимпульсов является модулирующей функцией для формирования периодической последовательности прямоугольных радиоимпульсов (ПППВИ), которые являются зондирующими сигналами для обнаружения и измерения координат движущихся целей. Поэтому, по спектру модулирующей функции (ПППВИ), можно относительно просто и быстро и определить спектр зондирующего сигнала (ПППРИ). При отражении зондирующего сигнала от движущейся цели изменяются частоты спектра гармоник несущего колебания (эффект Доплера). Вследствие чего, можно выделить полезный сигнал, отраженный от движущейся цели, на фоне мешающих (помеховых) колебаний, отраженных от неподвижных объектов (местные предметы) или малоподвижных объектов (метеообразования, стаи птиц и др.).

ПППВИ (рис. 1.42) представляет собой совокупность одиночных прямоугольных видеоимпульсов, следующих друг за другом через равные промежутки времени. Аналитическое выражение сигнала.

где – амплитуда импульсов; – длительность импульсов; – период следования импульсов; – частота следования импульсов, ; – скважность.

Для вычисления спектрального состава периодической последовательности импульсов применяют ряд Фурье. При известных спектрах одиночных импульсов, образующих периодическую последовательность, можно воспользоваться связью между спектральной плотностью импульсов и комплексными амплитудами ряда:

Для одиночного прямоугольного видеоимпульса спектральная плотность описывается формулой

Воспользовавшись связью между спектральной плотностью одиночного импульса и комплексными амплитудами ряда, находим

где = 0; ± 1; ± 2; ...

Амплитудно-частотный спектр (рис. 1.43) будет представлен совокупностью составляющих:

при этом положительным значениям соответствуют нулевые начальные фазы, а отрицательным – начальные фазы, равные .

Таким образом, аналитическое выражение ПППВИ будет равно

Из анализа графиков, приведенных на рисунке 1.43 следует:

· Спектр ПППВИ дискретный состоящий из отдельных гармоник с частотой .

· Огибающая АЧС изменяется по закону .

· Максимальное значение огибающей при равно , значение постоянной составляющей .

· Начальные фазы гармоник в пределах нечетных лепестков равны 0, в пределах четных .

· Количество гармоник в пределах каждого лепестка равно .

· Ширина спектра сигнала на уровне 90% энергии сигнала

· База сигнала , поэтому сигнал является простым.

Если изменять длительность импульсов , либо частоту их повторения F (период ), то параметры спектра и его АЧС будет изменяться.


На рисунке 1.43 представлен пример изменения сигнала и его АЧС при увеличении длительности импульса в два раза.

Периодические последовательности прямоугольных видеоимпульсов и их АЧС параметрами , T ,. и , T , изображены на рисунке 1.44.

Из анализа приведенных графиков следует:

1. Для ПППВИ с длительностью импульса :

· Скважность q =4, следовательно, в пределах каждого лепестка сосредоточено 3 гармоники;

· Частота k-ой гармоники ;

· Ширина спектра сигнала на уровне 90% энергии ;

· Постоянная составляющая равна

2. Для ПППВИ с длительностью импульса :

· Скважность q= 2, следовательно, в пределах каждого лепестка находится 1 гармоника;

· Частота k-ой гармоники осталось неизменной ;

· Ширина спектра сигнала на уровне 90% его энергии уменьшилась в 2 раза ;

· Постоянная составляющая увеличилась в 2 раза .

Таким образом, можно сделать вывод, что при увеличении длительности импульса, происходит “сжатие” АЧС вдоль оси ординат (уменьшается ширина спектра сигнала), при этом увеличиваются амплитуды спектральных составляющих. Частоты гармоник не изменяются.

На рисунке 1.44. представлен пример изменения сигнала и его АЧС при увеличении периода следования в 4 раза (уменьшение частоты повторения в 4 раза).

c) ширина спектра сигнала на уровне 90% его энергии не изменилась;

d) постоянная составляющая уменьшилась в 4 раза.

Таким образом, можно сделать вывод, что при увеличении периода следования (уменьшении частоты повторения происходит “сжатие ”) АЧС вдоль оси частот (уменьшаются амплитуды гармоник с увеличением их количества в пределах каждого лепестка). Ширина спектра сигнала при этом не изменяется. Дальнейшее уменьшение частоты повторения (увеличения периода следования) приведет (при ) к уменьшению амплитуд гармоник до бесконечно малых величин. При этом сигнал превратиться в одиночный, соответственно спектр станет сплошным.

Лабораторная работа №1.

Представление периодических импульсных

Сигналов рядом Фурье.

Цель работы – Изучение спектрального состава периодической последовательности импульсов прямоугольной формы при различных частотах следования и длительности импульсов.

Введение

Для, передачи хранения и обработки информации используются периодические импульсные сигналы, которые могут быть математически представлены рядами Фурье. Существует временное рис.1 и частотное представление электрических сигналов рис.2.

Рис.1. Временная форма представления периодической

последовательности прямоугольных импульсов.

Представление сигнала во временной области позволяет определить его параметры, энергию, мощность и длительность. Для представления сигналов в частотной области в виде спектра используется преобразования Фурье. Знание частотных свойств позволяет решать задачи идентификации характеристик сигнала (определение его наиболее информативных параметров), фильтрации (выделение полезного сигнала на фоне помех), выбора частоты дискретизации непрерывного сигнала. Одним из важнейших параметров сигнала является ширина частотного спектра, т. к. именно этот параметр оказывается определяющим при согласовании сигнала с аппаратурой обработки и передачи информации.

Основные формулы и определения.

Периодическую функциюu(t) с периодом T можно представить рядом Фурье


(1)

Колебание с частотой называется первой гармоникой; (n =1) колебание с частотой - второй гармоникой (n =2), c частотой - n-й гармоникой.

Выражение (1) с использованием тождества

может быть переписано в виде

, (2)

Коэффициенты и определяется по формулам

Величина выражает среднее значение функции за период, она, называется также постоянной составляющей и вычисляется по формуле

Формулы (3) решают задачу анализа : по заданной периодической функции нужно найти коэффициенты Фурье и . Формулы (1) и (2) решают задачу гармонического синтеза : по заданным коэффициентам и нужно найти периодическую функцию .

Анализ спектра последовательности прямоугольных импульсов

Совокупность амплитуд и частот гармонических составляющих называютамплитудной-частотной характеристикой (АЧХ), а зависимость от частот гармоник фазо-частотной характеристикой (ФЧХ). Амплитудно-частотный спектр прямоугольных импульсов может быть представлен графически рис.2.

Рис.2. АЧХ и ФЧХ периодической последовательности

прямоугольных импульсов.

Пусть , представляющая последовательность прямоугольных импульсов рис.1 с амплитудой , длительностью и периодом описывается уравнением

Тогда амплитуды и фазы для гармонических составляющих определяются уравнением:

(4)

Величина называется скважностью и обозначается буквой . Тогда уравнения (4) принимают вид

где n =1, 2, … . (5)

Для вычисления мощности сигналов представленных рядом Фурье в теории информации используют формулы в которых значение сопротивление R = 1 Ом. В этом случае напряжения u и токи i равны, поскольку i = u/R.

Мощность постоянной составляющей Р 0 будет

а мощность переменной составляющей Р n для n-й гармоники

(6)

Формула для результирующей мощности примет вид

ЗАДАНИЕ

1. Выполните анализ периодической последовательности прямоугольных импульсов

1.1 По номеру варианта N, полученного у преподавателя, определите из таблицы 1 значение скважности и круговой частоты .

Таблица 1

№, вар q , рад/с №, вар q , рад/с
3,24 47,25 8,50 69,22
6,52 97,50 6,72 78,59
5,93 14,45 2,30 19,44
7,44 15,12 3,59 37,96
1,87 70,93 4,48 78,27
5,46 91,65 2,99 42,48
6,40 86,40 6,18 75,45
1,27 48,98 1,81 57,64
2,97 40,13 3,22 15,46
1,09 85,95 3,66 55,25
2,13 57,30 3,27 27,58
7,99 66,90 4,64 3,68
4,61 31,55 3,71 43,73
1,95 25,24 4,33 70,44
2,66 6,61 3,38 52,07
1,10 18,37 6,92 26,17
4,06 70,24 4,95 55,52
2,40 35,10 6,51 82,64
9,42 33,96 3,32 68,07
6,13 43,25 7,75 32,49
7,36 52,37 5,71 26,68
2,33 24,84 2,42 96,02
2,18 25,34 16,99 88,59
5,80 12,99 62,23 50,21
1,68 41,16 37,54 20,70

1.2 а) Определите 11 первых значений коэффициентов u n (n=0, 1, 2, ... , 10), считая Е=1 В, используя электронные таблицы "Exel" (или калькулятор, или другой программный продукт) по формулам (5) и и внесите их в соответствующую строку u n таблицы 2.

1.3 б) Вычислите мощности p n и запишите их в таблицу 2.

Таблица 2

w w 1 2w 1 10w 1
u n u 0 u 1 u 2 u 10
j n j 1 j 2 j 3 j 10
p n p 0 p 1 p 2 p 10

и графика амплитудно-частотной характеристики (АЧХ) рис.3, а).

1.4 Постройте фазо-частотную характеристику (ФЧХ) периодической последовательности импульсов подобно рис.2) в которой изменение знака u n эквивалентно сдвигу фазы на p.

1.5 Вычислите удельную (на сопротивлении 1 Ом) мощность спектра первых 10 гармоник по формуле

.

2. Задача синтеза.

2.1. Используя уравнение (1), представьте сумму первых 10 гармоник подставив в виде уравнения

по вычисленным в таблице значениям u n для , , , …. и постройте временную зависимость на периоде Т, например.

из таблицы 3

в виде графика 4 во временном диапазоне одного периода Т= , используя текущее время t = nD t - t/2, с шагом где n=0,1,2, … ,10 , показанного на рис. 3 .

Рис. 3. Временной интервал для синтеза сигнала

В электронной аппаратуре различного применения широко используются периодические последовательности прямоугольных импульсов. При этом соотношения длительности импульса τ и периода колебания T могут сильно отличаться. Например, колебания, которые вырабатывают тактовые генераторы , задающие «темп» работы компьютеров, характеризуются соизмеримыми значениями τ и T , а импульсы, применяемые в радиолокации, могут быть в сотни раз короче периода. Отношение T /τ называют скважностью импульса , а обратную величину (τ/T ) - коэффициентом заполнения .

Рис. 6. Последовательность прямоугольных импульсов (а) и коэффициенты ряда Фурье (б)

Рассмотрим последовательность прямоугольных импульсов, имеющих амплитуду А , длительность τ и следующих с периодом T (рис. 6, а ). Выберем начало отсчета времени так, как показано на рисунке, то есть, чтобы импульс был симметричен относительно нулевой отметки, и вычислим коэффициенты ряда Фурье (1). Поскольку функция s (t ) при таком положении осей оказывается четной, все b n равны нулю, а для a n получаем:

Ряд Фурье для последовательности прямоугольных импульсов принимает вид:

(6)

Значения коэффициентов ряда Фурье, вычисленные по формулам (5), изображены на спектральной диаграмме, показанной на рис. 6, б .

Коэффициенты a n можно связать с функцией
. Действительно, они будут пропорциональны (с множителем
) значениям функции
при аргументах, соответствующих частотам гармоник. Это видно, если выражение (5) переписать так:

(7)

Таким образом, функция типа
является огибающей для коэффициентов Фурье-разложения последовательности прямоугольных импульсов (см. рис. 6, б ). Положение нулей огибающей на частотной оси f можно найти из условия
или
, где. Первый раз огибающая обращается в нуль при частотеf = 1/τ (или ω = 2π/τ). Далее нули огибающей повторяются при f = 2/τ, 3/τ, и т. д. Эти частоты могут совпасть (при целочисленных скважностях ) с частотами каких-либо гармоник спектра, и данные частотные составляющие из ряда Фурье исчезнут. Если скважность - целое число, периодT точно кратен длительности импульсов. Тогда между двумя нулями огибающей разместятся гармоники спектра в количестве q - 1.

Каким образом связаны параметры импульсов во временном и частотном представлениях иллюстрирует табл. 2. С увеличением периода T гармоники на спектральной диаграмме сближаются (спектр становится «гуще»). Однако изменение только периода не приводит к изменению формы огибающей амплитудного спектра. Эволюция огибающей (сдвиг ее нулей) зависит от длительности импульсов. Здесь показана эволюция амплитудных спектральных диаграмм для последовательностей прямоугольных импульсов, у которых изменяются длительности импульсов и периоды. По осям ординат спектральных диаграмм отложены относительные значения амплитуд гармоник:
Они рассчитаны по формулам:

(8)

Таблица 2. Осциллограммы и спектрограммы последовательностей прямоугольных импульсов

2.5. Спектры хаотических (шумовых) колебаний

Хаотическое колебание s (t ) - это случайный процесс . Каждая его реализация в неизменных условиях не повторяется, является уникальной. В электронике хаотические колебания связаны с шумами - колебаниями токов и напряжений, изменяющихся случайным образом вследствие беспорядочного движения носителей зарядов. В данном контексте хаотические и шумовые колебания считаются синонимами.

Рис. 7. Структурная схема измерения среднего квадрата шумового напряжения

Шумовое колебание можно описать в частотном представлении: ему сопоставляют некую спектральную характеристику, причем для случайного процесса она непрерывна. Теоретические основы спектрального разложения хаотических колебаний изложены в . Не погружаясь в строгую теорию, объясним методику экспериментального исследования статистических параметров шумового напряжения s (t ) по схеме, показанной на рис. 8.

Р
ис. 8.
Схема измерения спектральной плотности интенсивности шумового напряжения

Пропустим шумовое напряжение s (t ) через фильтр, выделяющий энергию колебаний в узкой полосе
вблизи частоты f . При соблюдении условия
<< f колебание на выходе фильтра будет напоминать синусоиду с частотой f . Однако амплитуда и фаза этой синусоиды подвержены хаотическим изменениям. С уменьшением полосы пропускания фильтра
форма выходного колебания все более приближается к синусоиде. Амплитуда ее уменьшается, но отношение среднего квадрата напряжения, прошедшего через фильтр (), к ширине полосы
остается конечным и при последовательном уменьшении полосы стремится к определенному пределу W (f ):

Предельную величину W (f ) называют спектральной плотностью интенсивности процесса s (t ). Она равна средней интенсивности гармонических составляющих, приходящихся на единичный интервал оси частот. При измерении W (f ) используют узкополосный перестраиваемый фильтр, который можно настроить на любую частоту в заданном диапазоне измерений. Шумовое напряжение, прошедшее сквозь фильтр, подвергают квадратичному детектированию и усредняют (интегрируют). В результате получают средний квадрат: . Далее по известной полосе фильтра
вычисляют W (f ). Полную интенсивность процесса - средний квадрат - находят интегрированием спектральных составляющих шума по всем частотам:

(10)

Для подготовки к работе следует изучить в полном объеме данное пособие. Более подробные сведения по теме лабораторной работы можно найти в главе «Частотные спектры электрических колебаний, спектральный анализ» книги .

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов t u и максимальным значением . Найдем разложение в ряд такого сигнала, выбрав начало координат, как показано на рис. 15. При этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих =0, и нужно рассчитать только коэффициенты .

постоянная составляющая

(2.28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса , деленная на весь период, т.е. , т.е. то же, что получилось и при строгом формальном вычислении (2.28).

Вспомним, что частота первой гармоники ¦ 1 = , где Т – период прямоугольного сигнала. Расстояние между гармониками D¦=¦ 1 . Если номер гармоники n окажется таким, что аргумент синуса , то амплитуда этой гармоники первый раз обращается в нуль. Это условие выполняется при . Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют «первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

С другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульса N=S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных p, то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть при , где k – любое целое число. Так, например, из (2.22) и (2.23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S=2 , то и N=2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 /U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

Случайные статьи

Вверх