Периодическая последовательность прямоугольных видеоимпульсов (пппви). Радио технические цепи и сигналы Спектральный состав периодической последовательности прямоугольных импульсов

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов и максимальным значением. Найдем разложение в ряд такого сигнала, выбрав начало координат как показано на рис. 15. при этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих=0, и нужно рассчитать только коэффициенты.

- 0 T t

постоянная составляющая
(28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса
, деленная на весь период, т.е.
, т.е. то же, что получилось и при строгом формальном вычислении (28).

Вспомним, что частота первой гармоники  1 =, где Т – период прямоугольного сигнала. Расстояние между гармониками= 1 . Если номер гармоники n окажется таким, что аргумент синуса
, откуда. Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют«первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

(29)

с другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульсаN = S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных , то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть
при
, гдеk – любое целое число. Так, например, из (22) и (23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S =2 , то и N =2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 / U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

2.5. Спектры при уменьшении длительности импульса и периода сигнала.

Регулировать скважность S = T / t n можно либо изменением длительности импульса t n при T =const, либо изменением периода Т при t n =const. Рассмотрим спектры сигналов при этом.

    T =const, t n =var. Частота первой гармоники f 1 =1/ T = const и f = f 1 = const. Первый нуль N = T / t n и по мере укорочения импульса t n смещается в область гармоник с большими номерами. При t n 0 N , спектр получается дискретным и f = f 1 , бесконечно широкий и с бесконечно малыми амплитудами гармоник.

    t n =const, T =var. Будем увеличивать период Т , тогда частота первой гармоники f 1 и расстояние между спектральными линиями f будут уменьшаться. Так как f = f 1 =1/Т , то спектральные линии будут смещаться в область более низких частот и «плотность» спектра возрастет. Если Т , то сигнал из периодического становится непериодическим (одиночный импульс). В этом случае f 1 = f 0, т.е. спектр из дискретного превращается в непрерывный, состоящий из бесконечно большого числа спектральных линий, находящихся на бесконечно малых расстояниях друг от друга.

Отсюда следует правило: периодические сигналы порождают дискретные (линейчатые) спектры, а непериодические – сплошные (непрерывные).

При переходе от дискретного спектра к непрерывному ряд Фурье заменяется интегралом Фурье. Наиболее просто эта замена выполняется, если использовать запись ряда Фурье в комплексной форме (16) и (17). Интеграл Фурье для непрерывного спектра записывается

, (30)

где
(31)

Функция F (j ) называется спектральной функцией или спектральной плотностью , которая зависит от частоты. Формулы (30) и (31) называют в совокупности односторонним преобразованием Фурье , которое является частным случаем более общего преобразования Лапласа и получается заменой в преобразовании Лапласа комплексной переменной р на j .

Спектральную функцию можно представить как огибающую коэффициентов ряда Фурье, т.е. как предел линейчатого спектра периодической функции при Т . Функция F (j ) может быть действительной или комплексной. Считая в общем случае
, мы получаем две частотные характеристики:
-амплитудный спектр , т.е. зависимость амплитуды спектральных составляющих от частоты, и () фазовый спектр , т.е. закон изменения фазы спектральных составляющих сигнала от частоты. Можно показать, что амплитудный спектр – всегда четная, а фазовый спектр – всегда нечетная функция . Спектральную функцию для многих непериодических сигналов (одиночных импульсов различной формы) наиболее легко и просто находить с помощью таблиц оригиналов и изображений в преобразовании Лапласа, которые приводятся в учебной и справочной литературе. После нахождения изображения по Лапласу F (p ) для заданной непериодической функции f (t ) , спектральная функция находится

(32)

Итак, согласно (30) непериодическая функция f (t ) представляется совокупностью бесконечно большого числа гармоник с бесконечно малыми амплитудами
во всем диапазоне частот от - до +, т.е. представление f (t ) в виде интеграла Фурье подразумевает суммирование незатухающих гармонических колебаний бесконечного сплошного спектра частот.

    описание лабораторной установки

Работа выполняется на блоке «Синтезатор сигнала», функциональная схема которого приведена на рис. 16.

Блок содержит генераторов Г1-Г6 шести первых гармоник сигнала. Частота первой гармоники равна 10 кГц. Гармонический сигнал с выхода n-го генератора через фазовращатель Ф n и аттенюатор А n поступает на сумматор. Фазовращателями задают начальные фазы  n гармоник, а аттенюаторами – их амплитуды А n .

На выходе сумматора в общем случае получается сумма шести гармоник сигнала

.

С выхода сумматора сигнал подается на вход Y осциллографа. Для его внешней синхронизации используется специальный импульсный сигнал, подаваемый с гнезда «Синхр.» на вход Х осциллографа. Для установки и контроля амплитуд гармоник предусмотрена возможность отключения любой из гармоник. Включив только генератор n-ой гармоники, можно установить ее амплитуду аттенюатором А n и оценить ее значения с помощью осциллографа. Каждый фазовращатель с помощью переключателя позволяет установить требуемое дискретное значение начальной фазы гармоники, либо отключить генератор.

Периодические и непериодические сигналы, форма которых отличается от синусоидальной, обычно называют импульсными сигналами . Процессы генерации, преобразования, а также вопросы практического применения импульсных сигналов относятся сегодня ко многим областям электроники.

Так, например, ни один современный блок питания не обходится без расположенного на его печатной плате генератора прямоугольных импульсов, такого например как на микросхеме TL494, выдающей импульсные последовательности с параметрами, подходящими для текущей нагрузки.

Поскольку импульсные сигналы могут иметь различную форму, то и называют различные импульсы в соответствии с похожей по форме геометрической фигурой: прямоугольные импульсы, трапецеидальные импульсы, треугольные импульсы, пилообразные импульсы, ступенчатые, и импульсы разных других форм. Между тем, наиболее часто практически применяются именно прямоугольные импульсы . О их параметрах и пойдет речь в данной статье.


Конечно, термин «прямоугольный импульс» несколько условен. В силу того что ничего идеального в природе не бывает, как не бывает и идеально прямоугольных импульсов. На самом деле реальный импульс, который принято называть прямоугольным, может иметь и колебательные выбросы (на рисунке показаны как b1 и b2), обусловленные вполне реальными емкостными и индуктивными факторами.

Выбросы эти могут, конечно, отсутствовать, однако существуют электрические и временные параметры импульсов, отражающие в числе прочего «неидеальность их прямоугольности».

Прямоугольный импульс имеет определенную полярность и рабочий уровень. Чаще всего полярность импульса положительна, поскольку подавляющее большинство цифровых микросхем питаются положительным, относительно общего провода, напряжением, и следовательно мгновенное значение напряжения в импульсе всегда больше нуля.

Но есть, например, компараторы, питаемые двухполярным напряжением, в таких схемах можно встретить разнополярные импульсы. Вообще микросхемы, питаемые напряжением отрицательной полярности, не так широко применяются, как микросхемы с обычным положительным питанием.

В последовательности импульсов рабочее напряжение импульса может принимать низкий или высокий уровень, причем один уровень с течением времени сменяет другой. Уровень низкого напряжения обозначают U0, уровень высокого U1. Наибольшее мгновенное значение напряжения в импульсе Ua или Um, относительно начального уровня, называется амплитудой импульса .


Разработчики импульсных устройств зачастую оперируют активными импульсами высокого уровня, такими как показанный на рисунке слева. Но иногда практически целесообразно применить в качестве активных импульсы низкого уровня, для которых исходное состояние - высокий уровень напряжения. Импульс низкого уровня показан на рисунке справа. Называть импульс низкого уровня «отрицательным импульсом» - безграмотно.

Перепад напряжения в прямоугольном импульсе называют фронтом, который представляет собой быстрое (соизмеримое по времени со временем протекания переходного процесса в цепи) изменение электрического состояния.

Перепад с низкого уровня к высокому уровню, то есть положительный перепад, называют передним фронтом или просто фронтом импульса. Перепад от высокого уровня к низкому, или отрицательный перепад, называют срезом, спадом или просто задним фронтом импульса.

Передний фронт обозначают в тексте 0.1 или схематически _|, а задний фронт 1.0 или схематически |_.

В зависимости от инерционных характеристик активных элементов, переходный процесс (перепад) в реальном устройстве всегда занимает некоторое конечное время. Поэтому полная длительность импульса включает в себя не только времена существования высокого и низкого уровней, но также времена длительности фронтов (фронта и среза), которые обозначаются Тф и Тср. Практически в любой конкретной схеме время фронта и спада можно увидеть при помощи .

Так как в реальности моменты начала и окончания переходных процессов в перепадах очень точно выделить непросто, то принято считать за длительность перепада промежуток времени, во время которого напряжение изменяется от 0,1Ua до 0,9Ua (фронт) или от 0,9Ua до 0,1Ua (срез). Так и крутизна фронта Кф и крутизна среза Кс.р. задаются в соответствии с данными граничными состояниями, и измеряются в вольтах в микросекунду (в/мкс). Непосредственно длительностью импульса называют промежуток времени, отсчитываемый от уровня 0,5Ua.

Когда рассматривают в общем процессы формирования и генерации импульсов, то фронт и срез принимают по длительности за ноль, поскольку для грубых расчетов эти малые временные промежутки оказываются не критичны.


Это импульсы, следующие друг за другом в определенном порядке. Если паузы между импульсами и длительности импульсов в последовательности равны между собой, то это периодическая последовательность. Период следования импульсов Т - это сумма длительности импульса и паузы между импульсами в последовательности. Частота f следования импульсов - это величина обратная периоду.


Периодические последовательности прямоугольных импульсов, кроме периода Т и частоты f, характеризуются еще парой дополнительных параметров: коэффициентом заполнения DC и скважностью Q. Коэффициент заполнения - это отношение времени длительности импульса к его периоду.

Скважность - это отношение периода импульса ко времени его длительности. Периодическая последовательность скважности Q=2, то есть такая, у которой время длительности импульса равно времени паузы между импульсами или у которой коэффициент заполнения равен DC=0,5, называется меандром.

Лабораторная работа №1.

Представление периодических импульсных

Сигналов рядом Фурье.

Цель работы – Изучение спектрального состава периодической последовательности импульсов прямоугольной формы при различных частотах следования и длительности импульсов.

Введение

Для, передачи хранения и обработки информации используются периодические импульсные сигналы, которые могут быть математически представлены рядами Фурье. Существует временное рис.1 и частотное представление электрических сигналов рис.2.

Рис.1. Временная форма представления периодической

последовательности прямоугольных импульсов.

Представление сигнала во временной области позволяет определить его параметры, энергию, мощность и длительность. Для представления сигналов в частотной области в виде спектра используется преобразования Фурье. Знание частотных свойств позволяет решать задачи идентификации характеристик сигнала (определение его наиболее информативных параметров), фильтрации (выделение полезного сигнала на фоне помех), выбора частоты дискретизации непрерывного сигнала. Одним из важнейших параметров сигнала является ширина частотного спектра, т. к. именно этот параметр оказывается определяющим при согласовании сигнала с аппаратурой обработки и передачи информации.

Основные формулы и определения.

Периодическую функциюu(t) с периодом T можно представить рядом Фурье


(1)

Колебание с частотой называется первой гармоникой; (n =1) колебание с частотой - второй гармоникой (n =2), c частотой - n-й гармоникой.

Выражение (1) с использованием тождества

может быть переписано в виде

, (2)

Коэффициенты и определяется по формулам

Величина выражает среднее значение функции за период, она, называется также постоянной составляющей и вычисляется по формуле

Формулы (3) решают задачу анализа : по заданной периодической функции нужно найти коэффициенты Фурье и . Формулы (1) и (2) решают задачу гармонического синтеза : по заданным коэффициентам и нужно найти периодическую функцию .

Анализ спектра последовательности прямоугольных импульсов

Совокупность амплитуд и частот гармонических составляющих называютамплитудной-частотной характеристикой (АЧХ), а зависимость от частот гармоник фазо-частотной характеристикой (ФЧХ). Амплитудно-частотный спектр прямоугольных импульсов может быть представлен графически рис.2.

Рис.2. АЧХ и ФЧХ периодической последовательности

прямоугольных импульсов.

Пусть , представляющая последовательность прямоугольных импульсов рис.1 с амплитудой , длительностью и периодом описывается уравнением

Тогда амплитуды и фазы для гармонических составляющих определяются уравнением:

(4)

Величина называется скважностью и обозначается буквой . Тогда уравнения (4) принимают вид

где n =1, 2, … . (5)

Для вычисления мощности сигналов представленных рядом Фурье в теории информации используют формулы в которых значение сопротивление R = 1 Ом. В этом случае напряжения u и токи i равны, поскольку i = u/R.

Мощность постоянной составляющей Р 0 будет

а мощность переменной составляющей Р n для n-й гармоники

(6)

Формула для результирующей мощности примет вид

ЗАДАНИЕ

1. Выполните анализ периодической последовательности прямоугольных импульсов

1.1 По номеру варианта N, полученного у преподавателя, определите из таблицы 1 значение скважности и круговой частоты .

Таблица 1

№, вар q , рад/с №, вар q , рад/с
3,24 47,25 8,50 69,22
6,52 97,50 6,72 78,59
5,93 14,45 2,30 19,44
7,44 15,12 3,59 37,96
1,87 70,93 4,48 78,27
5,46 91,65 2,99 42,48
6,40 86,40 6,18 75,45
1,27 48,98 1,81 57,64
2,97 40,13 3,22 15,46
1,09 85,95 3,66 55,25
2,13 57,30 3,27 27,58
7,99 66,90 4,64 3,68
4,61 31,55 3,71 43,73
1,95 25,24 4,33 70,44
2,66 6,61 3,38 52,07
1,10 18,37 6,92 26,17
4,06 70,24 4,95 55,52
2,40 35,10 6,51 82,64
9,42 33,96 3,32 68,07
6,13 43,25 7,75 32,49
7,36 52,37 5,71 26,68
2,33 24,84 2,42 96,02
2,18 25,34 16,99 88,59
5,80 12,99 62,23 50,21
1,68 41,16 37,54 20,70

1.2 а) Определите 11 первых значений коэффициентов u n (n=0, 1, 2, ... , 10), считая Е=1 В, используя электронные таблицы "Exel" (или калькулятор, или другой программный продукт) по формулам (5) и и внесите их в соответствующую строку u n таблицы 2.

1.3 б) Вычислите мощности p n и запишите их в таблицу 2.

Таблица 2

w w 1 2w 1 10w 1
u n u 0 u 1 u 2 u 10
j n j 1 j 2 j 3 j 10
p n p 0 p 1 p 2 p 10

и графика амплитудно-частотной характеристики (АЧХ) рис.3, а).

1.4 Постройте фазо-частотную характеристику (ФЧХ) периодической последовательности импульсов подобно рис.2) в которой изменение знака u n эквивалентно сдвигу фазы на p.

1.5 Вычислите удельную (на сопротивлении 1 Ом) мощность спектра первых 10 гармоник по формуле

.

2. Задача синтеза.

2.1. Используя уравнение (1), представьте сумму первых 10 гармоник подставив в виде уравнения

по вычисленным в таблице значениям u n для , , , …. и постройте временную зависимость на периоде Т, например.

из таблицы 3

в виде графика 4 во временном диапазоне одного периода Т= , используя текущее время t = nD t - t/2, с шагом где n=0,1,2, … ,10 , показанного на рис. 3 .

Рис. 3. Временной интервал для синтеза сигнала

Периодическая последовательность прямоугольных видеоимпульсов является модулирующей функцией для формирования периодической последовательности прямоугольных радиоимпульсов (ПППВИ), которые являются зондирующими сигналами для обнаружения и измерения координат движущихся целей. Поэтому, по спектру модулирующей функции (ПППВИ), можно относительно просто и быстро и определить спектр зондирующего сигнала (ПППРИ). При отражении зондирующего сигнала от движущейся цели изменяются частоты спектра гармоник несущего колебания (эффект Доплера). Вследствие чего, можно выделить полезный сигнал, отраженный от движущейся цели, на фоне мешающих (помеховых) колебаний, отраженных от неподвижных объектов (местные предметы) или малоподвижных объектов (метеообразования, стаи птиц и др.).

ПППВИ (рис. 1.42) представляет собой совокупность одиночных прямоугольных видеоимпульсов, следующих друг за другом через равные промежутки времени. Аналитическое выражение сигнала.

где – амплитуда импульсов; – длительность импульсов; – период следования импульсов; – частота следования импульсов, ; – скважность.

Для вычисления спектрального состава периодической последовательности импульсов применяют ряд Фурье. При известных спектрах одиночных импульсов, образующих периодическую последовательность, можно воспользоваться связью между спектральной плотностью импульсов и комплексными амплитудами ряда:

Для одиночного прямоугольного видеоимпульса спектральная плотность описывается формулой

Воспользовавшись связью между спектральной плотностью одиночного импульса и комплексными амплитудами ряда, находим

где = 0; ± 1; ± 2; ...

Амплитудно-частотный спектр (рис. 1.43) будет представлен совокупностью составляющих:

при этом положительным значениям соответствуют нулевые начальные фазы, а отрицательным – начальные фазы, равные .

Таким образом, аналитическое выражение ПППВИ будет равно

Из анализа графиков, приведенных на рисунке 1.43 следует:

· Спектр ПППВИ дискретный состоящий из отдельных гармоник с частотой .

· Огибающая АЧС изменяется по закону .

· Максимальное значение огибающей при равно , значение постоянной составляющей .

· Начальные фазы гармоник в пределах нечетных лепестков равны 0, в пределах четных .

· Количество гармоник в пределах каждого лепестка равно .

· Ширина спектра сигнала на уровне 90% энергии сигнала

· База сигнала , поэтому сигнал является простым.

Если изменять длительность импульсов , либо частоту их повторения F (период ), то параметры спектра и его АЧС будет изменяться.


На рисунке 1.43 представлен пример изменения сигнала и его АЧС при увеличении длительности импульса в два раза.

Периодические последовательности прямоугольных видеоимпульсов и их АЧС параметрами , T ,. и , T , изображены на рисунке 1.44.

Из анализа приведенных графиков следует:

1. Для ПППВИ с длительностью импульса :

· Скважность q =4, следовательно, в пределах каждого лепестка сосредоточено 3 гармоники;

· Частота k-ой гармоники ;

· Ширина спектра сигнала на уровне 90% энергии ;

· Постоянная составляющая равна

2. Для ПППВИ с длительностью импульса :

· Скважность q= 2, следовательно, в пределах каждого лепестка находится 1 гармоника;

· Частота k-ой гармоники осталось неизменной ;

· Ширина спектра сигнала на уровне 90% его энергии уменьшилась в 2 раза ;

· Постоянная составляющая увеличилась в 2 раза .

Таким образом, можно сделать вывод, что при увеличении длительности импульса, происходит “сжатие” АЧС вдоль оси ординат (уменьшается ширина спектра сигнала), при этом увеличиваются амплитуды спектральных составляющих. Частоты гармоник не изменяются.

На рисунке 1.44. представлен пример изменения сигнала и его АЧС при увеличении периода следования в 4 раза (уменьшение частоты повторения в 4 раза).

c) ширина спектра сигнала на уровне 90% его энергии не изменилась;

d) постоянная составляющая уменьшилась в 4 раза.

Таким образом, можно сделать вывод, что при увеличении периода следования (уменьшении частоты повторения происходит “сжатие ”) АЧС вдоль оси частот (уменьшаются амплитуды гармоник с увеличением их количества в пределах каждого лепестка). Ширина спектра сигнала при этом не изменяется. Дальнейшее уменьшение частоты повторения (увеличения периода следования) приведет (при ) к уменьшению амплитуд гармоник до бесконечно малых величин. При этом сигнал превратиться в одиночный, соответственно спектр станет сплошным.

Классификация сигналов и их параметры.

Электрические сигналы представляют собой электрические процессы, используемые для передачи или хранения информации.

Сигналы можно разделить на два больших класса: детерминированные и случайные. Детерминированными называются сигналы, мгновенные значения которых в любой момент времени можно предсказать с вероятностью, равной единице и которые задаются в виде некоторой определенной функции времени. Приведем несколько характерных примеров: гармонический сигнал с известной амплитудой A и периодом T (рис. 1.1 а ); последовательность прямоугольных импульсов с известным периодом следования T , длительностью t и и амплитудой A (рис. 1.1 б ); последовательность импульсов произвольной формы с известнымидлительностью t и, амплитудой A и периодом T (рис. 1.1 в ). Детерминированные сигналы не содержат никакой информации.

Случайные сигналы представляют собой хаотические функции времени, значения которых заранее неизвестны и не могут быть предсказаны с вероятностью, равной единице (одиночный импульс с длительностью t и и амплитудой A (рис. 1.1 г ) речь, музыка в выражении электрических величин). К случайным сигналам относятся также шумы.

Детерминированные сигналы, в свою очередь, подразделяются на периодические, для которых выполняется условие S (t )=S (t+kT ), где T – период, k -любое целое число, а под S (t ) понимается изменяющиеся со временем ток, напряжение или заряд (рис. 1.1 а, б, в ).

Очевидно, что к непериодическим относится любой детерминированный сигнал, для которого выполняется условие S (t S (t+kT ).

Простейшим периодическим сигналом является гармонический сигнал вида .

Любой сложный периодический сигнал можно разложить на гармонические составляющие. Ниже такое разложение будет проведено для нескольких конкретных видов сигналов.

Гармонический сигнал высокой частоты, в котором путем модуляции заложена информация, называется радиосигналом (рис. 1.1 д ).

Периодические сигналы.

Любой сложный периодический сигнал S (t )=S (t+kT ) (рис.1.2), заданный на интервале значений t от –¥ до +¥, может быть представлен в виде суммы элементарных гармонических сигналов. Это представление осуществляется в виде ряда Фурье, если только заданная периодическая функция удовлетворяет условиям Дирихле:

1. На любом конечном интервале времени функция S (t ) должна быть непрерывна или иметь конечное число разрывов первого рода.

2. В пределах одного периода функция должна иметь конечное число максимумов и минимумов.

Обычно все реальные радиотехнические сигналы удовлетворяют этим условиям. В тригонометрической форме ряд Фурье имеет вид (1.1)

где постоянная составляющая равна (1.2)

а коэффициенты a n , и b n при косинусоидальных и синусоидальных членах разложения определяются выражениями (1.3)

Амплитуда (модуль) и фаза (аргумент) n-ой гармоники выражаются через коэффициенты a n , и b n следующим образом (1.4)

При использовании комплексной формы записи выражение для сигнала S(t) принимает вид . Здесь коэффициенты , называемые комплексными амплитудами, равны и связаны с величинами а n и b n формулами: при n>0, и при n<0. С учётом обозначений .

Спектр периодической функции состоит из отдельных линий, соответствующих дискретным частотам 0, w, 2w, 3w …, т. е. имеет линейчатый или дискретный характер (рис.1.3). Использование рядов Фурье в сочетании с принципом суперпозици является мощным средством анализа влияния линейных систем на прохождение через них различного вида периодических сигналов.

При разложении периодической функции в ряд Фурье, следует учитывать симметрию самой функции, т. к. это позволяет упростить расчеты. В зависимости от вида симметрии представленные рядом Фурье функции могут:

1. Не иметь постоянной составляющей если площадь фигуры для положительного полупериода равна площади фигуры для отрицательного полупериода.

2. Не иметь четных гармоник и постоянной составляющей, если значения функции повторяются через половину периода с обратным знаком.

Спектральный состав последовательности прямоугольных импульсов при различном периоде их скважности.

Периодическая последовательность прямоугольных импульсов изображена на рис. 1.4. Постоянная составляющая ряда Фурье определяется из выражения и для данного случая равна .

Амплитуда cos-составлящей а n равна

, а амплитуда sin-составляющей b n равна .

Амплитуда n -ой гармоники

Случайные статьи

Вверх